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Simulation of wave packet tunneling of interacting identical particles
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We demonstrate a different method of simulation of nonstationary quantum processes, considering the
tunneling of twointeracting identical particlesrepresented by wave packets. The used method of quantum
molecular dynamic§WMD) is based on the Wigner representation of quantum mechanics. In the context of
this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These
classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual clas-
sical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term
is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not
independent, contrary to classical molecular dynamics. The developed WMD method takes into account the
influence of exchange and interaction between particles. The role of direct and exchange interactions in
tunneling is analyzed. The tunneling times for interacting particles are calculated.
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[. INTRODUCTION are fully taken into account. The wave packets are initially
placed in the same well on one side of the barrier. We ana-
A quantum molecular dynamics meth6é@MD) was re- lyze the long-time evolution of wave packéter time scales
cently successfully applied to a single wave packet tunnelingorresponding to many oscillation periods in the Wwelhd
[1,2]. This method is based on the Wigner representatioffonsider the probability to detect a particle in the first and in
[3,4] of quantum mechanicgurther refered to as WMD— the second well, respectively. Besides we study the short-
the Wigner representation based MDn the present paper, time evolution(characteristic times of interaction of wave
we further develop this method and consider its applicatiorPacket with the barrigrand regard tunneling times.
to the many-bodyproblem of nonstationary tunneling of in-  Tunneling time is one of the most important features of
teracting identical partides_ Nonstationary tunne”ng is anonstationary tunneling. However, the theoretical definition
problem of great interest in particular in connection with of this quantity is nontrivial. There exist a lot of definitions
developments of nanoelectronics. Until now role of interac-0f tunneling timeg[5-16]. We use two common approaches to
tion and exchange in nonstationary tunneling is not clear. Téletermine tunneling time, namepyesenceandarrival times
clear up this question is one of the aims of this paper. In thigsee Refs[2,17] and references thergin
connection we consider the tunneling of two identical First, one can consider the detector that reacts to the pres-
charged particles, represented by wave packets. ence of particles at some poirg. The values measured by
In the Wigner representation of quantum mechanics théhis detector in a set of experiments on, e.g., particles trans-
state of the system is described by the Wigner functionmission through a barrier, would depend on particle density
which obeys Wigner-Liouville equation. The equation can bep(Xo,t) at timet and the meapresence timef a particle at
rewritten in the form analogous to classical Liouville equa-pointx, would be given by
tion for classical distribution function. This analogy is the
basis of WMD: the ensembles of classical trajectories are * *
used to solve numerically quantum Wigner-Liouville equa- (tp(X0)) = fo dttp(XO't)/ fo dtp(Xo,1). @
tion. The trajectories can be determined by equations of mo-
tlon_analogogs to clas_smal ones. The used mod|f|c_at|o_n @ or two pointsx, andx, one can consider the average time
against classical equations of motion for the trajectories is all¢ transmission
addition of extra quantum term in the expression for the
force[1]. This quantum term is expressed through the local
approximation of the Wigner function. For the approxima-
tion of the Wigner function we used multidimensional Gauss , _ . .
distribution with the parameters determined through the locall € points are located on the different sides of a barrier,
moments of the ensemble of classical trajectories. then expressiofi2) is an approximation for tunnellng time.
In the present paper, the wave packets moving in double- Second, the detector that measures flux density can be

well potential were considered. The interparticle interactiond!S€d- For this set of experiments one needs to define another
quantity—arrival time. In this case the flux density operator

must be considered

<tT(Xa=Xb)>:<tp(xb)>_<tp(xa)>- 2
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<¢(t)|j(xo)|¢(t)> We describe the simulation method and the physical
J(Xg,t)=— , (4) model in Secs. Il and lll, respectively. Results are presented
fo dt( (1) I(x)| (1)) ;ar\]ngedcl:sc\:yssed in Sec. IV. Main conclusions are summarized

and thearrival time at pointx, can be defined as Il. SIMULATION METHOD

A. Equations of motion for Wigner trajectories

o o The Wigner representation of quantum mechanics is one
(ta(x0))= JO dttJ(Xo-t)/ fo dtJ(Xo,t). (5 of the representations that uses quantum distribution function
in phase space. The Wigner functiéi¥(q,p,t) describes
time evolution of the system and average values of physical
We stress thafi(x,,t) can be negative due to the opposite quantities are calculated with the help of scalar functions,
flux. Therefore Eq(4) can be used directly as a probability Weyl symbolsA%(q,p),
distribution ofarrival timesonly if the opposite flux is neg-
ligible. This requirement can be fulfilled if the d_etector is <A>:J dpf dgA¥(q,p) F™(q,p,t). (6)
located far from the barrier. Then E¢4) determines the
guasidistribution of thearrival times But in this case one
cannot distinguish the time of transmission under the barrielt €@ be showr{3,18], that Weyl symbols are expressed
and time of passing the region between the barrier and th#rough corresponding operatok¢q,p) as follows:
detector—still unresolved problem of time measurement in "
guantum mechanictsee, e.g., Refl11]). We use thepres- w _ NV T D P
enceandarrival times from all variety of possible definitions ATa.p)= ﬁf dédnTr{A(q,p)e“™ Ple™ 44717 (7)
of tunneling time because their measurement in the frame-
work of WMD is relatively simple and, what is more impor- The Wigner function is real and satisfies the following
tant, the physical meaning of the Eq%) and(4) is transpar-  rules:
ent and connected with the use of pointlike detectors in the
set of the experiments on particles transmission. W T
By changing the strength of interaction between the par- f dpF*(a.p.t)=(alpla), ®)
ticles, we investigate the influence of interaction on tunnel-
ing. We also consider the role of exchange. We found that the W -
exchange is important if the interaction is weak. In this case J daF"(q,p,t)=(plplp), 9)
exchange has a substantial influence on both the tunneling

probability and tunneling time. With the increase of interac—r1ere ;) is the density operator. The Wigner function

tion initial system energy with fixed initial wave functions FW(q,p.t) is also not non-negative. There are non-negative

becomes greater. This leads to decrease of tunneling timeg, anym distribution functions, for example Husimi function
the role of exchange gets smaller and tunneling becom

R i > . ) _ 9], but its evolution equation is usually more complicated
insignificant in comparison with passing above the barneras against the Wigner function

Our investigation had shown that WMD is an advantageous ¢"jna considers the Hamiltoniakl = p2/(2m) + V(q)
m.ethod, which can be used to solve the many—pody problemg,e, the evolution equation for the Wigner-functiigner-
without enormous computer resources, and which allows ONBiguville equation has the forn{3,18:

to take into account such essentially quantum features as T
exchange and tunneling.

w W * 1y2n 92n+1y; 42n+1-W
We present here the investigation of the two-particle prob- oF + P oF = 2 (h12)™ o v F ]
lem, but the generalization of WMD for the case of more gt m dq o (2n+1)! g2+l gp2ntl
particles is straightforward. The advantage of using the (10
Wigner representation in comparison with direct numerical
solution of Sch'fdinger equation is as follows. Using WMD, If the pOtential does not have the terms with more than the

one does not need to store large data arrays as with the grigcond power of), then Eq.(10) has the same form as for a
methods. The basic algorithm of WMD is very close to thatclassical distribution functiof

of the common molecular dynamié®ID), the distinction is

only in the calculation of the force and in the probability ﬁ Bﬁ_f: ﬂﬁ
interpretation of initial conditions. During about 40 y the gt madq dq Ip’
classical MD methods were sufficiently improved and all

advantageous numerical schemes can be simply impleFhe Wigner function must satisfy a number of conditions
mented in WMD. The modern MD techniques allow one to[18], therefore, initial functiorF (g, p,t=0) cannot be cho-
operate with thousands of particles and the same can be #en arbitrarily. Even if"(q,p,t) satisfies classical equation
principle achieved by means of WMD, but in the last case(11) (for specific potentiaV) it describes quantum system
one can consider quantum particles. adequately because all quantum correcti@ispowers of#)

(11)
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are held in the initial Wigner functio="V(q,p,t=0). For B. Consideration of exchange

example, the uncertainty principle holds. Exchange effects in this method can be in some cases
One can rewrite Eq(10) in the form analogous to EQ. ¢onsidered simply by using special initial conditions. Con-

(1D as sider the system with the wave functioh(x,t). One can

obtain the Wigner function gs
G p P Ve oF" s g sl
gt maq dq Ip’ (12

i § §
w — ip&lingy * = - =
FY(a.p,t) (27Tﬁ)Nf dgePMu*| g+ ot \I’(q 2,t).

where a new effective potenti&l.;; is introduced (18)

Neg FY v oFW 172 5°v °FV

oV _hm oV N If the system consists of either bosons or fermions, wave
g9 dp dq dp 24 hg° gp°

functions must be symmetrical or antisymmetrical. If we re-
gard the case when the Hamiltonian does not depend on
spins of the particles, then we can consider only the coordi-
nate part of wave function. Depending on the overall spin the
coordinate part of wave function is either antisymmetrical or

(13

The characteristics of Eq11) obey the equations coin-
ciding with classical equations of motion

aq p ap N(a,p,t) symmetrical. For example, wave function of the following
= =7 (14)  form is symmetricalantisymmetricat
. m gt aq
From Eq.(12) one can obtain the modified equations of mo- |q;(1,2)>:|¢1(1)>|¢2(2)>i|¢1(2)>|¢2(1)>, (19)
tion for Wigner trajectorie$3] V2(1£ (1] h2)|?)
aq p dp Ness(q,p,t) where (i) means the dependence on variables of the ith par-
ATm w e (15  ticle. We use this wave function for the initial system state

with |¢,) of the form of a Gaussian wave packet. As a result

To get information about time evolution of the system, Wethe Wigner function takes the form

numerically solve Eqg(15) for the ensemble of trajectories.
To simplify our calculation ofV.¢¢, Eq. (13), for the prob- 1

lem of interest we choose the analytical form of the external 2(1+ |<¢,1|¢2>|2)(277ﬁ)2
potential and the interaction between particles to contain

only the gnd and the 4t.h powers of coordllnates. In this case XJ dxldxzei/ﬁ(plxl+pzxz)
only the first two terms in the right-hand side of Efj0) are

nonzero. As a result the total force is a sum of the usual

FW(ql 1q21p1!p2):

classical force and the quantum forig@"®", which is infi- x| *| gy + ﬁ) &% g+ X2
nite series in general, but in our case contains only one term: 2 2
2 3 2W + H* ﬁ * ﬁ
Fguant: ﬁ_) sV J°F i, (16) —d’l gzt 2 ¢2 g1t 2
24] 99;99,99x Ipip; FW
X1 X2
X| 1| A1~ j) ¢2(QZ— 3)

where indexk is thekth component of the force vect@here
areNXxd such componentdy is the number of particles and X X
) o . . e . e 5 1
d is spatial _d|men3|onalli)y repetition of indexes indicates i¢1(Qz— ?) ¢2(q1— ?” (20)
the summation.
As one can note the quantum force depends on the Wigner )
function, which is unknown. To overcome this problem weand can be rewritten as
use a local approximation for the Wigner function in the
vicinity of phase space point, by Gaussiail]: 1
" FY(01.,02,P1,P2) = >
2(1= (1| 2)|%)

X[W1(d1,p1) Wa(d2,p2)

+W,(dz2,p2) Wa(dy,p1)
+U1x(d2,P2) Uzi(d1,P1)

FY(q,p,t)=Fy'exp —{[x—Xa() JAL(1)[X—X4(1)]
+ha(H[x—xa()1}), (17)

wherex=(g) is vector of all particle coordinates and mo-
menta, matrixA, (in our case of dimensionality>4) and

vectorb, (with dimensions 4 1) are obtained from the lo- +U1(01,p1)U2(02,p2)], (2D
cal moments of the ensemble of trajectories in the vicinity of
point X . where
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é é ance$. Second, we calculate the quantum force and solve
g+ E) ¢>k( q- E) numerically equations of motion.
(22) For thejth trajectory at timet with coordinates and mo-
menta{q®(t), p!’(t)} one has to compute the local mo-
and ments of the ensemble of trajectories in the vicinity of the
point{q(t), p¥)(t)} (pointx,), using the weight function
X which rapidly goes to zero with the increase of distance to
bjl a- 2/ this point(uncertainty principle must hold1]. The approxi-
(23y  mation (17) is the many-dimensional Gayss distribution of
the vectorx= ( ). Matrix A= 2Ca , is the inverse

In coordinate space the initial state Ed9) is described matrix of covarranc@a, and vectorb = 2A afa, wheref,
by wave function of the following form: is the vector of averages. If one calcula¢qs}, (pi)s (qiqk>,
(piPw), (diPw), i,k=1,... Nd, one obtains

1 )
Wi (q,p)= %j déePéh g

1 ipx/h g% X
Ukj(q,p)zm dxeP oy q+5

(X=Xk0)®  1PKo(X—Xy)

1
D= 57 p(— w T ) (24 fa:<(q—qa)>

P—Pa
For this case, . ) .
and symmetrical matrixC, with elements

1 _ 2 _ 2
wk(q,p>=ﬁexp<—(q T ) (25 Ca(l.m)=((a—af*)(am=ai)) — (@~ a¥)(cn— a5

20 2[hl(20)]? (28)
and the term wrthUk, in Eqg. (21) is proportional to forl=1,... Nd, m=1,...],
exf —A(X;o— X20)?], whereA is a positive constant. Iér;
=0,=0, thenA=1/(20?). For |x;o— Xo¢> o this term can Call,m)=((p1-na— PPNa) (Pm-na— P& na))
be neglected and one gets
—((P1-na— PPN N (Pm-na— P na)) (29

1
FY(01,92,p1,P2) = for I=Nd+1,...,2Nd, m=Nd+1,...J, and
2(1=[(ald2)1?)

X[Wi1(g1,p1)W2(d2,p2) (a) (a
+Wi(02,p2)Wa(d1,p1)].  (26) (= a™)){(Pm-nd— Pmeng))  (30)

We emphasize that this approximation is used only at thdo = -Nd, m=Nd+1,... ,Nd. Hereq; andp; are
initial time moment. Further the dynamical equations are the ith components of vectors of all coordinagand mo-

Call,m=((a— 9™ (Pm-na— P ya))

solved formally exactly. mentap; (- - -) means the averaging over all trajectories with
In the considered problem two particles move in the po- the weight function, which rapidly approaches zero with
tential growing distance to, in phase space. After that, one can
calculate the inverse matrix f&, and getA, andb,.
U(X)=a(—x>+yx*, a,y>0. (27) At every timet for the jth trajectory with coordinates

q®(t) and momenta(t) matrix A0)(t) and vectob(t)
The potential of interparticle interaction i¥,;={const are calculated, therefore the quantum force forjthetrajec-
— Br?}, if {const-Br?}>0, and=0, otherwise. If we dis- tory is known. Further, one has to solve E¢&5), for ex-
regard discontinuity in the interparticle potential then the dis-ample by Runge-Kutt and Adams methods.
tinction from harmonic oscillator is the 4th power wfand To calculate average values we use the following approxi-
one has only one quantum term in the force Bd). Using  mation for the Wigner function:
the classical trajectories and the Gaussian approximation for
the Wigner function one can solve the Wigner-Liouville 1
equation exactly. The distinction of the adopted approxima- FY(q,p,t)= K > dla—at)}s{p—pu(t)}.  (31)
tion from the case of distinguishable particles is that now k=1
initial positions of two particles may be in the Gaussian cen-
tered atx;q Or atx,qo. In this way we regard the symmetry in
exchange of particles and obtain the picture of their motion

The summation is over all trajectories in the ensemble. One
of the interesting values characterizing tunneling is the reac-
tion probability:

o]

C. Algorithm and calculation of average values
. . . . . . - R(Qa,t)=— x,t)dx, 32
Our simulation algorithm is the following. First, the initial (Ga) quap( ) (32

coordinates and momenta of every trajectory in the ensemble
are distributed according to the chosen parameters of thehere the lower limit of integration is the point of the largest
wave packetg§mean coordinate, momentum and their vari- height of the barrierp(x,t) is the particle density at point
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andN is the particle number. This quantity shows what partcharacteristic energies of the transverse quantization are

of wave packets are currently in the right well.
Another important value isunneling time In this paper,
to determinetunneling timewe use two methodgresence

much larger than the energies of the longitudinal motion. If it
is valid then adiabatic approximation applies and the prob-
lem is really one dimensional. The interparticle interaction

andarrival times. In the Wigner formalism these quantities then reduces to

are expressed through the following integredse Eqs(1)
and(4)]:

|¢(X01t)|2:f dpF"(xo,p.t) (33
and

JdppFW(xo,p,t)

f:dtf dppFY(Xg,p,t)

J(Xp,t)= , (34

the Weyl symbol for flux operator has the form

h . [2p(Xo—q)) d
I = ESIH(TO) a&(q—xo).

I1l. MODEL PROBLEM

A. Hamiltonian

We consider the following model problem. Two particles

move in one-dimensional space.g., in a quantum wipe
The Hamiltonian of the system reads

2
P
H=2 |5 -+a(=al+yq)) |[+U(la1—ga)), (39

whereq,q,,p1,p, are particle coordinates and momertta,
is interaction energy. We use the system of units With
=m=a=1}, lo=AY(ma)"* is the unit of length,E,
=#(a/m)¥? is the unit of energy, and the unit of time tig
=(m/a)*2,

2[e ey,
a?Jo \r+p? P a

er2/a2

U(r)=x

(r”
l1-erf|l—|]|,
a

(37)

where we performed integration over the particle wave func-
tions of transverse quantization, withbeing the character-
istic width of the quantum wire. The interaction parameter
A=0Q;Q,m¥¥(%%%aY is the ratio of characteristic Cou-
lomb energy and energy of oscillator.

In our model problem we substitute the potential E3¥)
for model quadratic one, just to avoid uncertainties related
with the calculation of the quantum force, Ed@6), and dem-
onstrate the method for the case of exchange. Parameters of
this potential are chosen to make it as close as possible to
expression37):

g(ﬁ— 0.05r/a)?) if r<a(20ym)¥?

0 if r=a(20ym)2

U(r)= (39

B. Initial parameters

We analyze the system described by Hamiltor{ia®) for
two cases—with and without exchange, respectively. The
main quantity analyzed is reaction probabil{82). Its larg-
est value is unity when both particles are entirely in the right
well. The reaction probability clearly shows the distribution
of particles between two wells and characterize their time
evolution.

Consider two cases, we call themeroth order WMD
(Wigner molecular dynamics in zeroth approximaji@nd
nth order WMD (further simply refered to as thguantum

functions have the form of the Gaussian wave packets. Initia{lﬁ) is neglected and evolution of the trajectories is deter-
mean momenta and coordinates of wave packets and théffined by classical Hamiltonian equations. Therefore, only
variance in momentum and coordinate spaces are chosen §assing above the barrier is taken into account. This approxi-
make the transmission above the barrier as lower as possibigation is not purely classical, because the initial distribution
e_md the overlgpping of the_ wave packets i.s negligible. Paris the same as for thguantum case|F"(q,p,t=0)| can
ticles move in the direction of the barrier. This model contain arbitrary powers df. As a result we have a classical
roughly describes nonstationary tunneling of two electrongyojution of the quantum distribution function, therefore, we
through the potential barrier in a quantum wire or tunnelingeg)l this casezeroth order WMD not the classical MD. The
between two quantum wells. This can be realized, for exgjfference betweemeroth orderandnth orderis that in the
ample, when with the help of laser pulses one prepares thgter case the quantum term in the force is regarded.
state of two electrons in the form of two wave packets in  The jntial distribution in coordinate space has the form of
nanostructure and study the system evolution in time. two Gaussian wave packets, which practically do not over-
In the used system of units the Hamiltonian is lap. In thequantum caseone can consider two situations.
First, we can consider the problem neglecting exchdngge
regard the distinguishable particlesSecond, we can take
exchange into account. In the first case the initial wave func-
tion is a product of one-particle wave functions, and the
The Coulomb potentiaD;Q,/r describes the interaction Wigner function has the form FY(q;,9,,p1,p2)
between particles. The problem becomes one dimensional #W,(q,,p1)W»(d,,p,) [compare with Eq.(26)]. This

2

2
p.
H=i_21<7'—q?+7qf‘ +U(la-az).  (36)
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means that one of the Gaussians corresponds to the first pa

ticle and another to the second one. For such initial distribu-  0.0010

tion function exchange effects cannot arise and we will call

this situation thequantum casevithout exchange. 0.0005
In the second situation the particles are identical and the

initial wave function is symmetricalor antisymmetrical

0.0010

0.0005

Now the Wigner function has the form E®6). Both Gaus- £0.0000 0.0000
sians may correspond either to the first or to the second parm 0.02

ticle. The initial coordinates and momenta of some trajectory, 0.5}
{X1,X2,Y1,Y2}, are chosen with the probability a
[F¥(01,02,p1,P2)] of the configuration {q,=X,,q; 0.01 o

=X41,P1=Y2,P2=VY1}. If the wave packets are initially close
to each other, the termg,; in Eq. (21) do not vanish and the 0.00 . . 040 . .
procedure of setting the initial coordinates and momenta be- o 10 20 3 0 10 20 30
comes more complicated. t t

For bothquantum case@without and with exchangedy-

namical correlations are taken into account due to solution of FIG. 1. Time dependence of the reaction probabiiy), for
the zeroth orderWMD (dashed lines and quantum casegsolid

the Wigner-Liouville equation. Statistical correlations are not"nes)_ Interaction strengths abe=0,2x 10%,6x 10%, 2 10°. Maxi-

regardeq In thequanturr_l casevithout exchgnge but they a-re mum value of the reaction probabili(t) =1, timetis in the units
allowed in the case with exchange. In this sense two S|tuat—0:(m/ @2« is the potential parameter, E(B5).

tions resemble Hartree and Hartree-Fock approximations, re-

spectively. Note that welo not usemean-field approxima-  ger WMD allows us to estimate the transmission under the
tion, the similarity must be regarded only in the meaningpyrier, The state of the particles is considered as an en-
formulated above. tangled unified whole and the “transmission under the bar-

For thezeroth ordeWMD both ways of setting the initial  (jer” means the transmission of at least one of the particles.
coordinates and momenta for trajectories can be applied, but

it was found that the result is practically independent on it.
We use the following parameters: initial coordinates and mo-
menta for the Gaussians axg(0)= — 140, p,(0)=45, and In Fig. 1 we show the reaction probability for the interac-
x,(0)=—310, p,(0)=90, dispersions in coordinate spacetion A=0,2x10",6x 10", and 2<10°. The quantum case
(o for the Gauss function ekp x%/(202)]) are the same for (With exchanggandzeroth orderWMD are compared. One

both wave packets and equal to 20, in momentum spgce C€an see that for weak interaction there is a large difference
=#/(20,) =0.025. Parameters of the external potential ardetween these two cases. Under barrier transmission takes

a=1,y=1.25<10 8. place only for thequantum casein the zeroth orderonly

One of our aims is to investigate the influence of interac\vave packet components with the energy above the height of
tion on tunneling. We change the interaction paramater the barrier can pass to the right well. _ _
starting withA =0 (no interaction. Effective charge of elec-  With the increase of the interaction the reaction probabil-
trons or holes in nanostructures can be controlled by chandy 9rows for both cases. The reason is that the initial energy
ing the permittivity, but not in very wide range. Here we D&COMes larger with the increase ofand there are more _
would like to draw the attention to the fact that due to the usevave packet components with the energy above the barrier
of special system of unité,=m=a=1, the region of varia- height. For _thequantum casét is also important that there
tion of the dimensionless interaction parameter can be prett3r® Some high-energy components which pass under the bar-
wide. Actually, in this unit system the parameters of externafier. For very large valuea=6x 10" reaction probabilities
potential are used. Therefore, we can vary the interaction Of the zeroth orderand thequantum caseare almost the
by changing the external potential. This change leads to scaf@me- It means that for strong interaction the role of tunnel-

ing of the units of length, time, energy, and so on. ing is negligible, wave packets include too many compo-
nents, which can pass above the barrier.

In Fig. 2 we present reaction probabilities for tngantum
casewith and without exchange. For largeclassical trans-

The definition of tunneling is usually given for one par- mission above the barrier prevails and the influence of ex-
ticle. We analyze the motion of two particles and asuhe change on tunneling is considerably small. For smatine
der barrier transmissions of interest for us, théotal initial can see a large difference in the reaction probabilities. If the
energy of the system is set about 0.99 of the height of thearticles are distinguishable, the reaction probability is
barrier. So even if one of particles borrows all the energy thdarger, but the sign of the effect depends on the initial param-
latter is still lower than the height of the barrier. We deal with eters of the wave packets, they can be fitted to make reaction
the wave packets, therefore, though the mean energy per parobability greater for the case with exchange. Initially the
ticle is lower than the barrier height, the transmission abovalistribution of the particles in coordinate space has the form
the barrier is still possible due to the dispersion in the mo-of two separated Gaussians. We found that, for the used pa-
mentum space. The comparison betweerothandnth or-  rameters, these two peaks quickly merge, forming a single

A. Reaction probabilities

IV. RESULTS AND DISCUSSION
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reaction probabilityR(t) stays near the value 0.15. On the
i other hand, there can be another explanation: after the trans-
Voo mission of some part of the wave packets to the right well,
! ! ] the repulsion between this part and the part in the left well
! v prevents further penetration of particles to the right well, as a
! /_//_ result the reaction probability settles at0.15 (i.e., mecha-
0.000 nism analogous to Coulomb blockad®/hether this second
5 mechanism realizes is unclear, perhaps, these two processes
take place simultaneously. As for the first scenario, the ki-
0.15 | netic equilibrium, there are no doubts it can exist: the reac-
» tion probability also settles around some valueXetO (the
\\4 L quantum casevithout exchange, Fig.)2 For this case there
is no interaction, therefore, the only explanation can be the
0.10 equality of transmissions through the barrier in both direc-
tions. In fact, there are no reasons to believe that the reaction
probability will always stay near, say, 0.16or A=2
FIG. 2. Time dependence of the reaction probabfy) forthe X 10°), possibly here we observe only the intermediate equi-
guantum casewith exchange(solid line§ and without exchange librium and later the system can come to the state when the

(dashed lings Interaction strengths aren=0,2x10%6x 10°%, reaction probability is about 0.5. But such extra-long-time
2X10°. evolution must be the subject of special investigation.

0 [ 0.004

0.002

0.002

R(t)

t t

peak, and very seldom they can be seen as two separated B. Hartree description of the tunneling

wave packets. It means that particles are close to each other goth Fig. 1 and Fig. 2 demonstrate oscillations of the
during most of the time of simulation and exchange effectseaction probability, with the growth of interaction parameter
must be substantial. From Fig. 2 one can see that exchangetheir period decreases and the picture becomes less regular.
almost does not influence the reaction probability for largerhis is due to the behavior of the transmitted part of wave
\. In this situation the contribution of transmission above thepackets: to the right from the barrier there is the wall of the
barrier to the reaction probability is very higim comparison  right well, transmitted part is reflected from it and moves to
with tunneling, compare with theeroth ordeWWMD in Fig.  the left. Then it is partially transmitted back to the left well,
1). So it is difficult to notice exchange effects against thismaking some modulation of the reaction probability curve.
baCkgrOUnd. It is pOSSible that the observed effect of therransmission takes p|ace maimy when the wave packets
increase of transmission above the barrier with the growth ofome to the barrier, therefore, reaction probability changes
the interaction parameter masks the effect of the increase %ftep by step with some period. When the interaction is weak,
dynamical correlations between EIECtronS, which also SUPthe partides move almost independent|y and this period co-
press exchange effects. incides approximately with that of oscillations of one particle
The reaction probabilities presented in Figs. 1 and 2 werg the well (T~4, see Figs. 1 and 2, the curves fo=0).
measured with the finite precision, connected with the finitegyt with the increase of this period is changed accordingly
time step and finite number of the used trajectories. Therey the influence of one particle on the motion of the other
fore, the regions of constant reaction probability for small particle. This influence can be illustrated more transparently
arise—the subtle noise was smoothed over the errors. Thg the picture of effective one-particle barrigisee below
SubS'[antia| feature@iﬁerence$ Of ZeI‘Oth Ol‘derand I’Ith or- In terms of Hartree approximation it means that each par-
der WMD in caseswith and without exchangéecome ap-  ticle moves effectively in the double-barrier potential. The
parent on much larger scales and they are easily taken inf@st barrier is the stationary barrier between the wells and the
account. Probably, the observed noise is due to the additiongbcond one is the effective time-dependent barrier due to the
oscillations of high-energy parts of the wave packets. It willinteraction of particles. Each particle either falls on two bar-
be the subject of detailed investigations in the next work. riers, or moves between them. In the latter case a particle is
Another common feature of Figs. 1 and 2 is the behaviolinside the potential well. As the other particle moves closely,
of the reaction probability fox =2 10°. At the end of con-  the well becomes more narrow and the energy levels in it
sidered time interval, €t=<30, the reaction prObabiIitieS h|gher Therefore' the energy of the partide in the well be-
settle around the value-0.15. It seems that in the limit of comes greater and the probability of transmission increases.
infinite A the equilibrium corresponds to the situation whenanother mechanism is that due to the nonadiabatic narrow-
both the wells are occupied with the equal probability, be-ing of the well the particle can jump on the higher-energy
cause in this case the total initial energy is much greater thavels, which also results in the increase of transmission
the height of the barrier. Then the reaction probability musfprobability.
settle around 0.5. Probably,=2x 10" is not large enough The effective potential for the first particle in Hartree ap-
and the value of initial total energy is sufficient only to push proximation can be defined as
a small part of the wave packet through the barrier. It is
possible that then the leakage to the right well is balanced by
the opposite transmission to the left well and that is why the Veff(xl’t)zvext(xl)Jrf Uxs X0z, D%dx;,  (39)
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0.0} TABLE I. Tunneling times for the spatial intervgl-45,45.
(The system of units iE=m=a=1.)
:.g 0.5} A=0 A=6x10"  A=2Xx10°
% Presence time 0.8(x0.1) 0.72(0.09) 0.38¢-0.05)
Q 0} (no exchange
g 0.0} 0.0 Arrival time 0.9(x0.1) 0.86(+0.09) 0.80¢-0.08)
1-3 (no exchange
sl:’ Presence time 0.8(x0.1) 0.78(0.08) 0.36¢-0.04)
T 0.5f 0.5 (exchangg
Arrival time 1.2(x0.1) 1.06(-0.09) 0.72¢-0.07)
h
-1.0¢ , , 1 -1.0 X , (exchangg
-40 200 0 200 400  -200 0 200

X . .
X C. Tunneling times

FIG. 3. Effective potential§39) (solid lineg, compared with the
stationary external potentiéliashed lines in units of the height of
the barrier. Two times,=0.1 andt=0.5, are considered. Two left

(right) plots are the effective potentials for the particle, which is v . .
initially closer (farthep to (from) the barrier. We consider thguan- strengths arev=0,6x 104’2>< 10°. We consider two situa-

tum case without exchange,\=2x1C°, x is in units I, tions: th(_aquantum case/yith_and without exchange. At the
—#Y2(ma) ¥4 « is the potential parameter, E(B5). edge pomts of thls spatial 'mtgrval the valug _o'f the external
potential approximately coincides with the initial energy of
) o ) ) the system. Two methods give close resuitsineling time
whereV,,, is the external potential) is the interaction be-  gjculated with the help of Eq4) is in general greater than
tween particles, anfiy(x,,t)|? is the probability density for  that with use of Eq(1), but the trend connected with changes
the second particle. The effective potential for the secongy tynneling time with change of the interaction parameter is
electron is given by the analogous equation. Of course, thighe same for both methods. Tunneling time is greater for the
can be applied only to the case when the particles are distinszse with exchange, because for our parameters there are
guishable. If the particles are identical, one can use thgaywer high-energy components in wave packets and tunnel-
Hartree-Fock approximation, and the potential becomes nonpg is weaker for this case. With the increasenothe tun-
local. We use neither Hartree nor Hartree-Fock approxima- peling time gets smaller, this can also be connected with the
tion in our method, they are just very convenient tools offact that for strong interaction there are more high-energy
visualizing the behavior of quantum particles, which 'nterathomponents in the wave packets. Those components make
with the barrier and between each other. the main contribution to the transmission because the more
In Fig. 3 we plot the effective potentials, EB9), A\=2  the energy the greater the transmission probability. Because
quantum casevithout exchange is considered, the particlespassing some interval becomes smaller. We do not list in
are not identical, thereforeartree approximationcan be  Tapje | transmission times for the case of free motion. These
used. The case with exchange is more interesting but if patimes are all about 2.0 and are almost independeni on
ticles are identical, one can regard the effective potentialexchange and method of their calculation. One can see that
which is the same for all particles. Here we just illustrate theyne presence of the barrier makes the transmisgiomel-
possible mechanisms of transmission and the case of distirpng) time smaller. It is due to enriching of the transmitted
guishable particles is more representative. In this case ongart of the wave packet by high-energy components, which
can differ two situations. First, the barrier, which arises duezg greater probability to go through the barrier and move
to interparticle interaction, is close to the stationary barriefggter. Therefore, on average transmitted part arrives to de-

(effective broadening of the stationary barrier in the twotectorearlier than the whole wave packet in the case of free
right plots in Fig. 3. Second, this effective barrier is closer mgtion.

to the left wall of the well(the two left plots in Fig. B For
identical particles, these situations take place simultaneously
and the effective potential is the same for every particle.
The right plots in Fig. 3 show that the interaction makes We analyzed the nonstationary tunneling of two interact-
the barrier wider and it prevents the transmission. But in théng identical particles by quantum molecular dynamics
left plots, the well becomes not so deep, the energy levels imethod based on the Wigner representation. The WMD
it grow and low-energy components of the wave packet camethod allows one to calculate different features character-
be reflected from the effective barrier in the direction of theizing quantum evolution and influence of particle interaction
stationary barrier. The tunneling and transmission above thand exchange on tunneling. We found that the strong inter-
barrier from the higher-energy levels are stronger. The oscilaction in this problem leads to decrease of the role of tun-
lations of the low-energy components between the stationargeling in the transmission. If the interaction is not very
and effective barriers make the tunneling probability larger.strong (. <6x10%*) then exchange effects are substantial

Consider now Table I, where we present tunneling times
for the spatial interval —45,45 determined by two meth-
ods: presence(l) and arrival times (4). The interaction

V. CONCLUSION
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and affect tunneling. The developed WMD method allowedstep in the development of WMD for the many-body prob-
us to analyze some interesting features of tunneling anttms and we intend to report the results of investigation of
proved to be a powerful tool for study of nonstationary quan-many-particles system in the next paper.

tum processes. Of course, the numerical solution of Schro
dinger equation would not be too difficult for the problem
under consideration, but in this work we just demonstrate the
method, regarding relatively simple system of two identical
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