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Simulation of wave packet tunneling of interacting identical particles

Yu. E. Lozovik,1,* A. V. Filinov,1,2,† and A. S. Arkhipov1,‡
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We demonstrate a different method of simulation of nonstationary quantum processes, considering the
tunneling of twointeracting identical particles, represented by wave packets. The used method of quantum
molecular dynamics~WMD! is based on the Wigner representation of quantum mechanics. In the context of
this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These
classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual clas-
sical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term
is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not
independent, contrary to classical molecular dynamics. The developed WMD method takes into account the
influence of exchange and interaction between particles. The role of direct and exchange interactions in
tunneling is analyzed. The tunneling times for interacting particles are calculated.
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I. INTRODUCTION

A quantum molecular dynamics method~QMD! was re-
cently successfully applied to a single wave packet tunne
@1,2#. This method is based on the Wigner representa
@3,4# of quantum mechanics~further refered to as WMD—
the Wigner representation based MD!. In the present paper
we further develop this method and consider its applicat
to themany-bodyproblem of nonstationary tunneling of in
teracting identical particles. Nonstationary tunneling is
problem of great interest in particular in connection w
developments of nanoelectronics. Until now role of intera
tion and exchange in nonstationary tunneling is not clear
clear up this question is one of the aims of this paper. In
connection we consider the tunneling of two identic
charged particles, represented by wave packets.

In the Wigner representation of quantum mechanics
state of the system is described by the Wigner functi
which obeys Wigner-Liouville equation. The equation can
rewritten in the form analogous to classical Liouville equ
tion for classical distribution function. This analogy is th
basis of WMD: the ensembles of classical trajectories
used to solve numerically quantum Wigner-Liouville equ
tion. The trajectories can be determined by equations of
tion analogous to classical ones. The used modification
against classical equations of motion for the trajectories is
addition of extra quantum term in the expression for
force @1#. This quantum term is expressed through the lo
approximation of the Wigner function. For the approxim
tion of the Wigner function we used multidimensional Gau
distribution with the parameters determined through the lo
moments of the ensemble of classical trajectories.

In the present paper, the wave packets moving in dou
well potential were considered. The interparticle interactio

*Electronic address: lozovik@isan.troitsk.ru
†Electronic address: alex@ravel.mpg.uni-rostock.de
‡Electronic address: antoncom@id.ru
1063-651X/2003/67~2!/026707~9!/$20.00 67 0267
g
n

n

a

-
o
is
l

e
,

e
-

e
-
o-
as
n

e
l

-
s
al

e-
s

are fully taken into account. The wave packets are initia
placed in the same well on one side of the barrier. We a
lyze the long-time evolution of wave packets~for time scales
corresponding to many oscillation periods in the well! and
consider the probability to detect a particle in the first and
the second well, respectively. Besides we study the sh
time evolution ~characteristic times of interaction of wav
packet with the barrier! and regard tunneling times.

Tunneling time is one of the most important features
nonstationary tunneling. However, the theoretical definit
of this quantity is nontrivial. There exist a lot of definition
of tunneling time@5–16#. We use two common approaches
determine tunneling time, namelypresenceandarrival times
~see Refs.@2,17# and references therein!.

First, one can consider the detector that reacts to the p
ence of particles at some pointx0. The values measured b
this detector in a set of experiments on, e.g., particles tra
mission through a barrier, would depend on particle den
r(x0 ,t) at timet and the meanpresence timeof a particle at
point x0 would be given by

^tp~x0!&5E
0

`

dttr~x0 ,t !Y E
0

`

dtr~x0 ,t !. ~1!

For two pointsxa andxb one can consider the average tim
of transmission

^tT~xa ,xb!&5^tp~xb!&2^tp~xa!&. ~2!

If the points are located on the different sides of a barr
then expression~2! is an approximation for tunneling time.

Second, the detector that measures flux density can
used. For this set of experiments one needs to define ano
quantity—arrival time. In this case the flux density operato
must be considered

Ĵ~x0!5
1

2
@ p̂d~ q̂2x0!1d~ q̂2x0! p̂#, ~3!
©2003 The American Physical Society07-1
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J~x0 ,t !5
^c~ t !uĴ~x0!uc~ t !&

E
0

`

dt^c~ t !uĴ~x0!uc~ t !&

, ~4!

and thearrival time at pointx0 can be defined as

^ta~x0!&5E
0

`

dttJ~x0 ,t !Y E
0

`

dtJ~x0 ,t !. ~5!

We stress thatJ(x0 ,t) can be negative due to the oppos
flux. Therefore Eq.~4! can be used directly as a probabili
distribution ofarrival timesonly if the opposite flux is neg-
ligible. This requirement can be fulfilled if the detector
located far from the barrier. Then Eq.~4! determines the
quasidistribution of thearrival times. But in this case one
cannot distinguish the time of transmission under the bar
and time of passing the region between the barrier and
detector—still unresolved problem of time measuremen
quantum mechanics~see, e.g., Ref.@11#!. We use thepres-
enceandarrival times from all variety of possible definition
of tunneling time because their measurement in the fra
work of WMD is relatively simple and, what is more impo
tant, the physical meaning of the Eqs.~1! and~4! is transpar-
ent and connected with the use of pointlike detectors in
set of the experiments on particles transmission.

By changing the strength of interaction between the p
ticles, we investigate the influence of interaction on tunn
ing. We also consider the role of exchange. We found that
exchange is important if the interaction is weak. In this ca
exchange has a substantial influence on both the tunne
probability and tunneling time. With the increase of intera
tion initial system energy with fixed initial wave function
becomes greater. This leads to decrease of tunneling ti
the role of exchange gets smaller and tunneling beco
insignificant in comparison with passing above the barr
Our investigation had shown that WMD is an advantage
method, which can be used to solve the many-body probl
without enormous computer resources, and which allows
to take into account such essentially quantum features
exchange and tunneling.

We present here the investigation of the two-particle pr
lem, but the generalization of WMD for the case of mo
particles is straightforward. The advantage of using
Wigner representation in comparison with direct numeri
solution of Schro¨dinger equation is as follows. Using WMD
one does not need to store large data arrays as with the
methods. The basic algorithm of WMD is very close to th
of the common molecular dynamics~MD!, the distinction is
only in the calculation of the force and in the probabili
interpretation of initial conditions. During about 40 y th
classical MD methods were sufficiently improved and
advantageous numerical schemes can be simply im
mented in WMD. The modern MD techniques allow one
operate with thousands of particles and the same can b
principle achieved by means of WMD, but in the last ca
one can consider quantum particles.
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We describe the simulation method and the physi
model in Secs. II and III, respectively. Results are presen
and discussed in Sec. IV. Main conclusions are summar
in Sec. V.

II. SIMULATION METHOD

A. Equations of motion for Wigner trajectories

The Wigner representation of quantum mechanics is
of the representations that uses quantum distribution func
in phase space. The Wigner functionFW(q,p,t) describes
time evolution of the system and average values of phys
quantities are calculated with the help of scalar functio
Weyl symbolsAW(q,p),

^A&5E dpE dqAW~q,p! FW~q,p,t !. ~6!

It can be shown@3,18#, that Weyl symbols are expresse
through corresponding operatorsA(q̂,p̂) as follows:

AW~q,p!5
\

2pE djdhTr@A~ q̂,p̂!ei jq̂1 ih p̂#e2 i jq2 ihp. ~7!

The Wigner function is real and satisfies the followin
rules:

E dpFW~q,p,t !5^qur̂uq&, ~8!

E dqFW~q,p,t !5^pur̂up&, ~9!

here r̂ is the density operator. The Wigner functio
FW(q,p,t) is also not non-negative. There are non-negat
quantum distribution functions, for example Husimi functio
@19#, but its evolution equation is usually more complicat
as against the Wigner function.

If one considers the HamiltonianH5p2/(2m)1V(q),
then the evolution equation for the Wigner-function~Wigner-
Liouville equation! has the form@3,18#:

]FW

]t
1

p

m

]FW

]q
5 (

n50

`
~\/2i !2n

~2n11!!

]2n11V

]q2n11

]2n11FW

]p2n11
.

~10!

If the potential does not have the terms with more than
second power ofq, then Eq.~10! has the same form as for
classical distribution functionf,

] f

]t
1

p

m

] f

]q
5

]V

]q

] f

]p
. ~11!

The Wigner function must satisfy a number of conditio
@18#, therefore, initial functionFW(q,p,t50) cannot be cho-
sen arbitrarily. Even ifFW(q,p,t) satisfies classical equatio
~11! ~for specific potentialV) it describes quantum system
adequately because all quantum corrections~all powers of\)
7-2
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SIMULATION OF WAVE PACKET TUNNELING OF . . . PHYSICAL REVIEW E 67, 026707 ~2003!
are held in the initial Wigner functionFW(q,p,t50). For
example, the uncertainty principle holds.

One can rewrite Eq.~10! in the form analogous to Eq
~11! as

]FW

]t
1

p

m

]FW

]q
5

]Ve f f

]q

]FW

]p
, ~12!

where a new effective potentialVe f f is introduced

]Ve f f

]q

]FW

]p
5

]V

]q

]FW

]p
2

\2

24

]3V

]q3

]3FW

]p3
1••• . ~13!

The characteristics of Eq.~11! obey the equations coin
ciding with classical equations of motion

]q

]t
5

p

m
;

]p

]t
52

]V~q,p,t !

]q
. ~14!

From Eq.~12! one can obtain the modified equations of m
tion for Wigner trajectories@3#

]q

]t
5

p

m
;

]p

]t
52

]Ve f f~q,p,t !

]q
. ~15!

To get information about time evolution of the system, w
numerically solve Eqs.~15! for the ensemble of trajectories
To simplify our calculation ofVe f f , Eq. ~13!, for the prob-
lem of interest we choose the analytical form of the exter
potential and the interaction between particles to con
only the 2nd and the 4th powers of coordinates. In this c
only the first two terms in the right-hand side of Eq.~10! are
nonzero. As a result the total force is a sum of the us
classical force and the quantum forceFk

quant, which is infi-
nite series in general, but in our case contains only one te

Fk
quant5S \2

24D ]3V

]qi]ql]qk

]2FW

]pi]pl

1

FW
, ~16!

where indexk is thekth component of the force vector~there
areN3d such components,N is the number of particles an
d is spatial dimensionality!, repetition of indexes indicate
the summation.

As one can note the quantum force depends on the Wig
function, which is unknown. To overcome this problem w
use a local approximation for the Wigner function in t
vicinity of phase space pointxa by Gaussian@1#:

FW~q,p,t !5F0
Wexp~2$@x2xa~ t !#Aa~ t !@x2xa~ t !#

1ba~ t !@x2xa~ t !#%!, ~17!

wherex5( p
q ) is vector of all particle coordinates and m

menta, matrixAa ~in our case of dimensionality 434) and
vectorba ~with dimensions 431) are obtained from the lo
cal moments of the ensemble of trajectories in the vicinity
point xa .
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B. Consideration of exchange

Exchange effects in this method can be in some ca
considered simply by using special initial conditions. Co
sider the system with the wave functionC(x,t). One can
obtain the Wigner function as@3#

FW~q,p,t !5
1

~2p\!NE djeipj/\C* S q1
j

2
,t DCS q2

j

2
,t D .

~18!

If the system consists of either bosons or fermions, wa
functions must be symmetrical or antisymmetrical. If we r
gard the case when the Hamiltonian does not depend
spins of the particles, then we can consider only the coo
nate part of wave function. Depending on the overall spin
coordinate part of wave function is either antisymmetrical
symmetrical. For example, wave function of the followin
form is symmetrical~antisymmetrical!:

uC~1,2!&5
uf1~1!&uf2~2!&6uf1~2!&uf2~1!&

A2~16u^f1uf2&u2!
, ~19!

where~i! means the dependence on variables of the ith p
ticle. We use this wave function for the initial system sta
with ufk& of the form of a Gaussian wave packet. As a res
the Wigner function takes the form

FW~q1 ,q2 ,p1 ,p2!5
1

2~16u^f1uf2&u2!~2p\!2

3E dx1dx2ei /\(p1x11p2x2)

3Ff1* S q11
x1

2 Df2* S q21
x2

2 D
6f1* S q21

x2

2 Df2* S q11
x1

2 D G
3Ff1S q12

x1

2 Df2S q22
x2

2 D
6f1S q22

x2

2 Df2S q12
x1

2 D G ~20!

and can be rewritten as

FW~q1 ,q2 ,p1 ,p2!5
1

2~16u^f1uf2&u2!

3@W1~q1 ,p1! W2~q2 ,p2!

1W1~q2 ,p2! W2~q1 ,p1!

6U12~q2 ,p2! U21~q1 ,p1!

6U12~q1 ,p1!U21~q2 ,p2!#, ~21!

where
7-3
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Wk~q,p!5
1

~2p\!
E djeipj/\fk* S q1

j

2DfkS q2
j

2D
~22!

and

Uk j~q,p!5
1

~2p\!
E dxeipx/\fk* S q1

x

2Df j S q2
x

2D .

~23!

In coordinate space the initial state Eq.~19! is described
by wave function of the following form:

fk~x!5
1

~2p\!
expS 2

~x2xk0!2

4sk
2

1
ipk0~x2xk0!

\ D . ~24!

For this case,

Wk~q,p!5
1

p\
expS 2

~q2xk0!2

2sk
2

2
~p2pk0!2

2@\/~2sk!#
2D ~25!

and the term withUk j in Eq. ~21! is proportional to
exp@2A(x102x20)

2#, whereA is a positive constant. Ifs1
5s25s, thenA51/(2s2). For ux102x20u@s this term can
be neglected and one gets

FW~q1 ,q2 ,p1 ,p2!5
1

2~16u^f1uf2&u2!

3@W1~q1 ,p1!W2~q2 ,p2!

1W1~q2 ,p2!W2~q1 ,p1!#. ~26!

We emphasize that this approximation is used only at
initial time moment. Further the dynamical equations a
solved formally exactly.

In the considered problem two particles move in the p
tential

U~x!5a~2x21gx4!, a,g.0. ~27!

The potential of interparticle interaction isVint5$const
2br 2%, if $const2br 2%.0, and50, otherwise. If we dis-
regard discontinuity in the interparticle potential then the d
tinction from harmonic oscillator is the 4th power ofx and
one has only one quantum term in the force Eq.~16!. Using
the classical trajectories and the Gaussian approximation
the Wigner function one can solve the Wigner-Liouvil
equation exactly. The distinction of the adopted approxim
tion from the case of distinguishable particles is that n
initial positions of two particles may be in the Gaussian c
tered atx10 or atx20. In this way we regard the symmetry i
exchange of particles and obtain the picture of their moti

C. Algorithm and calculation of average values

Our simulation algorithm is the following. First, the initia
coordinates and momenta of every trajectory in the ensem
are distributed according to the chosen parameters of
wave packets~mean coordinate, momentum and their va
02670
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numerically equations of motion.

For the j th trajectory at timet with coordinates and mo
menta$q( j )(t), p( j )(t)% one has to compute the local mo
ments of the ensemble of trajectories in the vicinity of t
point $q( j )(t), p( j )(t)% ~point xa), using the weight function
which rapidly goes to zero with the increase of distance
this point~uncertainty principle must hold! @1#. The approxi-
mation ~17! is the many-dimensional Gauss distribution
the vectorx5( p

q ). Matrix Aa5 1
2 Ca

21 , Ca
21 is the inverse

matrix of covarianceCa , and vectorba522Aaf a , wheref a
is the vector of averages. If one calculates^qi&, ^pi&, ^qiqk&,
^pipk&, ^qipk&, i ,k51, . . . ,Nd, one obtains

f a5K S q2qa

p2pa
D L

and symmetrical matrixCa with elements

Ca~ l ,m!5^~ql2ql
(a)!~qm2qm

(a)!&2^ql2ql
(a)&^qm2qm

(a)&
~28!

for l 51, . . . ,Nd, m51, . . . ,l ,

Ca~ l ,m!5^~pl 2Nd2pl 2Nd
(a) !~pm2Nd2pm2Nd

(a) !&

2^~pl 2Nd2pl 2Nd
(a) !&^~pm2Nd2pm2Nd

(a) !& ~29!

for l 5Nd11, . . . ,2Nd, m5Nd11, . . . ,l , and

Ca~ l ,m!5^~ql2ql
(a)!~pm2Nd2pm2Nd

(a) !&

2^~ql2ql
(a)!&^~pm2Nd2pm2Nd

(a) !& ~30!

for l 51, . . . ,Nd, m5Nd11, . . . ,2Nd. Hereqi andpi are
the i th components of vectors of all coordinatesq and mo-
mentap; ^•••& means the averaging over all trajectories w
the weight function, which rapidly approaches zero w
growing distance toxa in phase space. After that, one ca
calculate the inverse matrix forCa and getAa andba .

At every time t for the j th trajectory with coordinates
q( j )(t) and momentap( j )(t) matrix A( j )(t) and vectorb( j )(t)
are calculated, therefore the quantum force for thej th trajec-
tory is known. Further, one has to solve Eqs.~15!, for ex-
ample by Runge-Kutt and Adams methods.

To calculate average values we use the following appro
mation for the Wigner function:

FW~q,p,t !5
1

K (
k51

K

d$q2qk~ t !%d$p2pk~ t !%. ~31!

The summation is over all trajectories in the ensemble. O
of the interesting values characterizing tunneling is the re
tion probability:

R~qa ,t !5
1

NEqa

`

r~x,t !dx, ~32!

where the lower limit of integration is the point of the large
height of the barrier,r(x,t) is the particle density at pointx
7-4
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andN is the particle number. This quantity shows what p
of wave packets are currently in the right well.

Another important value istunneling time. In this paper,
to determinetunneling timewe use two methods:presence
and arrival times. In the Wigner formalism these quantiti
are expressed through the following integrals@see Eqs.~1!
and ~4!#:

uc~x0 ,t !u25E dpFW~x0 ,p,t ! ~33!

and

J~x0 ,t !5

E dppFW~x0 ,p,t !

E
0

`

dtE dppFW~x0 ,p,t !

, ~34!

the Weyl symbol for flux operator has the form

Jx0
5

\

2
sinS 2p~x02q!

\ D ]

]q
d~q2x0!.

III. MODEL PROBLEM

A. Hamiltonian

We consider the following model problem. Two particl
move in one-dimensional space~e.g., in a quantum wire!.
The Hamiltonian of the system reads

H5(
i 51

2 S pi
2

2m
1a~2qi

21gqi
4! D 1U~ uq12q2u!, ~35!

whereq1 ,q2 ,p1 ,p2 are particle coordinates and momenta,U
is interaction energy. We use the system of units with$\
5m5a51%, l 05\1/2/(ma)1/4 is the unit of length,E0
5\(a/m)1/2 is the unit of energy, and the unit of time ist0
5(m/a)1/2.

Initially particles are placed in the left well, their wav
functions have the form of the Gaussian wave packets. In
mean momenta and coordinates of wave packets and
variance in momentum and coordinate spaces are chos
make the transmission above the barrier as lower as pos
and the overlapping of the wave packets is negligible. P
ticles move in the direction of the barrier. This mod
roughly describes nonstationary tunneling of two electro
through the potential barrier in a quantum wire or tunnel
between two quantum wells. This can be realized, for
ample, when with the help of laser pulses one prepares
state of two electrons in the form of two wave packets
nanostructure and study the system evolution in time.

In the used system of units the Hamiltonian is

H5(
i 51

2 S pi
2

2
2qi

21gqi
4D 1U~ uq12q2u!. ~36!

The Coulomb potentialQ1Q2 /r describes the interactio
between particles. The problem becomes one dimension
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characteristic energies of the transverse quantization
much larger than the energies of the longitudinal motion. I
is valid then adiabatic approximation applies and the pr
lem is really one dimensional. The interparticle interacti
then reduces to

U~r !5l
2

a2E0

` e2r2/a2
r

Ar 21r2
dr5l

Ap

a
er 2/a2F12er fS r

aD G ,
~37!

where we performed integration over the particle wave fu
tions of transverse quantization, witha being the character
istic width of the quantum wire. The interaction parame
l5Q1Q2m3/4/(\3/2a1/4) is the ratio of characteristic Cou
lomb energy and energy of oscillator.

In our model problem we substitute the potential Eq.~37!
for model quadratic one, just to avoid uncertainties rela
with the calculation of the quantum force, Eq.~16!, and dem-
onstrate the method for the case of exchange. Paramete
this potential are chosen to make it as close as possibl
expression~37!:

U~r !5H l

a
~Ap20.05~r /a!2! if r ,a~20Ap!1/2

0 if r>a~20Ap!1/2.

~38!

B. Initial parameters

We analyze the system described by Hamiltonian~36! for
two cases—with and without exchange, respectively. T
main quantity analyzed is reaction probability~32!. Its larg-
est value is unity when both particles are entirely in the rig
well. The reaction probability clearly shows the distributio
of particles between two wells and characterize their ti
evolution.

Consider two cases, we call themzeroth order WMD
~Wigner molecular dynamics in zeroth approximation! and
nth order WMD~further simply refered to as thequantum
case!. For zeroth order WMDthe quantum term in force Eq
~16! is neglected and evolution of the trajectories is det
mined by classical Hamiltonian equations. Therefore, o
passing above the barrier is taken into account. This appr
mation is not purely classical, because the initial distribut
is the same as for thequantum case: uFW(q,p,t50)u can
contain arbitrary powers of\. As a result we have a classica
evolution of the quantum distribution function, therefore, w
call this casezeroth order WMD, not the classical MD. The
difference betweenzeroth orderandnth order is that in the
latter case the quantum term in the force is regarded.

The initial distribution in coordinate space has the form
two Gaussian wave packets, which practically do not ov
lap. In thequantum caseone can consider two situations
First, we can consider the problem neglecting exchange~i.e.,
regard the distinguishable particles!. Second, we can take
exchange into account. In the first case the initial wave fu
tion is a product of one-particle wave functions, and t
Wigner function has the form FW(q1 ,q2 ,p1 ,p2)
5W1(q1 ,p1)W2(q2 ,p2) @compare with Eq. ~26!#. This
7-5
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LOZOVIK, FILINOV, AND ARKHIPOV PHYSICAL REVIEW E 67, 026707 ~2003!
means that one of the Gaussians corresponds to the first
ticle and another to the second one. For such initial distri
tion function exchange effects cannot arise and we will c
this situation thequantum casewithout exchange.

In the second situation the particles are identical and
initial wave function is symmetrical~or antisymmetrical!.
Now the Wigner function has the form Eq.~26!. Both Gaus-
sians may correspond either to the first or to the second
ticle. The initial coordinates and momenta of some trajecto
$x1 ,x2 ,y1 ,y2%, are chosen with the probabilit
uFW(q1 ,q2 ,p1 ,p2)u of the configuration $q15x2 ,q2
5x1 ,p15y2 ,p25y1%. If the wave packets are initially clos
to each other, the termsUk j in Eq. ~21! do not vanish and the
procedure of setting the initial coordinates and momenta
comes more complicated.

For bothquantum cases~without and with exchange! dy-
namical correlations are taken into account due to solutio
the Wigner-Liouville equation. Statistical correlations are n
regarded in thequantum casewithout exchange but they ar
allowed in the case with exchange. In this sense two si
tions resemble Hartree and Hartree-Fock approximations
spectively. Note that wedo not usemean-field approxima-
tion, the similarity must be regarded only in the meani
formulated above.

For thezeroth orderWMD both ways of setting the initia
coordinates and momenta for trajectories can be applied
it was found that the result is practically independent on
We use the following parameters: initial coordinates and m
menta for the Gaussians arex1(0)52140, p1(0)545, and
x2(0)52310, p2(0)590, dispersions in coordinate spa
(sx for the Gauss function exp@2x2/(2sx

2)#) are the same for
both wave packets and equal to 20, in momentum spacesp
5\/(2sx)50.025. Parameters of the external potential
a51,g51.2531028.

One of our aims is to investigate the influence of inter
tion on tunneling. We change the interaction parameterl,
starting withl50 ~no interaction!. Effective charge of elec-
trons or holes in nanostructures can be controlled by cha
ing the permittivity, but not in very wide range. Here w
would like to draw the attention to the fact that due to the u
of special system of units,\5m5a51, the region of varia-
tion of the dimensionless interaction parameter can be pr
wide. Actually, in this unit system the parameters of exter
potential are used. Therefore, we can vary the interactiol
by changing the external potential. This change leads to s
ing of the units of length, time, energy, and so on.

IV. RESULTS AND DISCUSSION

The definition of tunneling is usually given for one pa
ticle. We analyze the motion of two particles and as theun-
der barrier transmissionis of interest for us, thetotal initial
energy of the system is set about 0.99 of the height of
barrier. So even if one of particles borrows all the energy
latter is still lower than the height of the barrier. We deal w
the wave packets, therefore, though the mean energy per
ticle is lower than the barrier height, the transmission ab
the barrier is still possible due to the dispersion in the m
mentum space. The comparison betweenzerothand nth or-
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der WMD allows us to estimate the transmission under
barrier. The state of the particles is considered as an
tangled unified whole and the ‘‘transmission under the b
rier’’ means the transmission of at least one of the partic

A. Reaction probabilities

In Fig. 1 we show the reaction probability for the intera
tion l50,23104,63104, and 23105. The quantum case
~with exchange! andzeroth orderWMD are compared. One
can see that for weak interaction there is a large differe
between these two cases. Under barrier transmission t
place only for thequantum case, in the zeroth orderonly
wave packet components with the energy above the heigh
the barrier can pass to the right well.

With the increase of the interaction the reaction proba
ity grows for both cases. The reason is that the initial ene
becomes larger with the increase ofl and there are more
wave packet components with the energy above the ba
height. For thequantum caseit is also important that there
are some high-energy components which pass under the
rier. For very large valuesl>63104 reaction probabilities
of the zeroth orderand thequantum caseare almost the
same. It means that for strong interaction the role of tunn
ing is negligible, wave packets include too many comp
nents, which can pass above the barrier.

In Fig. 2 we present reaction probabilities for thequantum
casewith and without exchange. For largel classical trans-
mission above the barrier prevails and the influence of
change on tunneling is considerably small. For smalll one
can see a large difference in the reaction probabilities. If
particles are distinguishable, the reaction probability
larger, but the sign of the effect depends on the initial para
eters of the wave packets, they can be fitted to make reac
probability greater for the case with exchange. Initially t
distribution of the particles in coordinate space has the fo
of two separated Gaussians. We found that, for the used
rameters, these two peaks quickly merge, forming a sin

FIG. 1. Time dependence of the reaction probabilityR(t), for
the zeroth orderWMD ~dashed lines! and quantum case~solid
lines!. Interaction strengths arel50,23104,63104,23105. Maxi-
mum value of the reaction probabilityR(t)51, timet is in the units
t05(m/a)1/2, a is the potential parameter, Eq.~35!.
7-6
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peak, and very seldom they can be seen as two sepa
wave packets. It means that particles are close to each o
during most of the time of simulation and exchange effe
must be substantial. From Fig. 2 one can see that exch
almost does not influence the reaction probability for la
l. In this situation the contribution of transmission above
barrier to the reaction probability is very high~in comparison
with tunneling, compare with thezeroth orderWMD in Fig.
1!. So it is difficult to notice exchange effects against th
background. It is possible that the observed effect of
increase of transmission above the barrier with the growth
the interaction parameter masks the effect of the increas
dynamical correlations between electrons, which also s
press exchange effects.

The reaction probabilities presented in Figs. 1 and 2 w
measured with the finite precision, connected with the fin
time step and finite number of the used trajectories. The
fore, the regions of constant reaction probability for small
arise—the subtle noise was smoothed over the errors.
substantial features~differences! of zeroth orderandnth or-
der WMD in caseswith and without exchangebecome ap-
parent on much larger scales and they are easily taken
account. Probably, the observed noise is due to the additi
oscillations of high-energy parts of the wave packets. It w
be the subject of detailed investigations in the next work

Another common feature of Figs. 1 and 2 is the behav
of the reaction probability forl523105. At the end of con-
sidered time interval, 0<t<30, the reaction probabilities
settle around the value'0.15. It seems that in the limit o
infinite l the equilibrium corresponds to the situation wh
both the wells are occupied with the equal probability, b
cause in this case the total initial energy is much greater t
the height of the barrier. Then the reaction probability m
settle around 0.5. Probably,l523105 is not large enough
and the value of initial total energy is sufficient only to pu
a small part of the wave packet through the barrier. It
possible that then the leakage to the right well is balanced
the opposite transmission to the left well and that is why

FIG. 2. Time dependence of the reaction probabilityR(t) for the
quantum casewith exchange~solid lines! and without exchange

~dashed lines!. Interaction strengths arel50,23104,63104,
23105.
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reaction probabilityR(t) stays near the value 0.15. On th
other hand, there can be another explanation: after the tr
mission of some part of the wave packets to the right w
the repulsion between this part and the part in the left w
prevents further penetration of particles to the right well, a
result the reaction probability settles at'0.15 ~i.e., mecha-
nism analogous to Coulomb blockade!. Whether this second
mechanism realizes is unclear, perhaps, these two proce
take place simultaneously. As for the first scenario, the
netic equilibrium, there are no doubts it can exist: the re
tion probability also settles around some value forl50 ~the
quantum casewithout exchange, Fig. 2!. For this case there
is no interaction, therefore, the only explanation can be
equality of transmissions through the barrier in both dire
tions. In fact, there are no reasons to believe that the reac
probability will always stay near, say, 0.15~for l52
3105), possibly here we observe only the intermediate eq
librium and later the system can come to the state when
reaction probability is about 0.5. But such extra-long-tim
evolution must be the subject of special investigation.

B. Hartree description of the tunneling

Both Fig. 1 and Fig. 2 demonstrate oscillations of t
reaction probability, with the growth of interaction parame
l their period decreases and the picture becomes less reg
This is due to the behavior of the transmitted part of wa
packets: to the right from the barrier there is the wall of t
right well, transmitted part is reflected from it and moves
the left. Then it is partially transmitted back to the left we
making some modulation of the reaction probability curv
Transmission takes place mainly when the wave pack
come to the barrier, therefore, reaction probability chan
step by step with some period. When the interaction is we
the particles move almost independently and this period
incides approximately with that of oscillations of one partic
in the well (T'4, see Figs. 1 and 2, the curves forl50).
But with the increase ofl this period is changed accordingl
to the influence of one particle on the motion of the oth
particle. This influence can be illustrated more transpare
in the picture of effective one-particle barriers~see below!.

In terms of Hartree approximation it means that each p
ticle moves effectively in the double-barrier potential. T
first barrier is the stationary barrier between the wells and
second one is the effective time-dependent barrier due to
interaction of particles. Each particle either falls on two b
riers, or moves between them. In the latter case a partic
inside the potential well. As the other particle moves close
the well becomes more narrow and the energy levels i
higher. Therefore, the energy of the particle in the well b
comes greater and the probability of transmission increa
Another mechanism is that due to the nonadiabatic narr
ing of the well the particle can jump on the higher-ener
levels, which also results in the increase of transmiss
probability.

The effective potential for the first particle in Hartree a
proximation can be defined as

Ve f f~x1 ,t !5Vext~x1!1E U~x1 ,x2!uc~x2 ,t !u2dx2 , ~39!
7-7
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LOZOVIK, FILINOV, AND ARKHIPOV PHYSICAL REVIEW E 67, 026707 ~2003!
whereVext is the external potential,U is the interaction be-
tween particles, anduc(x2 ,t)u2 is the probability density for
the second particle. The effective potential for the seco
electron is given by the analogous equation. Of course,
can be applied only to the case when the particles are di
guishable. If the particles are identical, one can use
Hartree-Fock approximation, and the potential becomes n
local. We use neither Hartree nor Hartree-Fock approxim
tion in our method, they are just very convenient tools
visualizing the behavior of quantum particles, which inter
with the barrier and between each other.

In Fig. 3 we plot the effective potentials, Eq.~39!, l52
3105. The dotted line is the shape of external potential. T
quantum casewithout exchange is considered, the partic
are not identical, therefore,Hartree approximationcan be
used. The case with exchange is more interesting but if
ticles are identical, one can regard the effective poten
which is the same for all particles. Here we just illustrate
possible mechanisms of transmission and the case of di
guishable particles is more representative. In this case
can differ two situations. First, the barrier, which arises d
to interparticle interaction, is close to the stationary barr
~effective broadening of the stationary barrier in the tw
right plots in Fig. 3!. Second, this effective barrier is clos
to the left wall of the well~the two left plots in Fig. 3!. For
identical particles, these situations take place simultaneo
and the effective potential is the same for every particle.

The right plots in Fig. 3 show that the interaction mak
the barrier wider and it prevents the transmission. But in
left plots, the well becomes not so deep, the energy level
it grow and low-energy components of the wave packet
be reflected from the effective barrier in the direction of t
stationary barrier. The tunneling and transmission above
barrier from the higher-energy levels are stronger. The os
lations of the low-energy components between the station
and effective barriers make the tunneling probability larg

FIG. 3. Effective potentials~39! ~solid lines!, compared with the
stationary external potential~dashed lines!, in units of the height of
the barrier. Two times,t50.1 andt50.5, are considered. Two lef
~right! plots are the effective potentials for the particle, which
initially closer ~farther! to ~from! the barrier. We consider thequan-
tum case without exchange, l523105, x is in units l 0

5\1/2(ma)21/4, a is the potential parameter, Eq.~35!.
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C. Tunneling times

Consider now Table I, where we present tunneling tim
for the spatial interval@245,45# determined by two meth-
ods: presence~1! and arrival times ~4!. The interaction
strengths arel50,63104,23105. We consider two situa-
tions: thequantum casewith and without exchange. At the
edge points of this spatial interval the value of the exter
potential approximately coincides with the initial energy
the system. Two methods give close results,tunneling time
calculated with the help of Eq.~4! is in general greater than
that with use of Eq.~1!, but the trend connected with chang
in tunneling time with change of the interaction paramete
the same for both methods. Tunneling time is greater for
case with exchange, because for our parameters there
fewer high-energy components in wave packets and tun
ing is weaker for this case. With the increase ofl the tun-
neling time gets smaller, this can also be connected with
fact that for strong interaction there are more high-ene
components in the wave packets. Those components m
the main contribution to the transmission because the m
the energy the greater the transmission probability. Beca
the components with higher-energy move faster the time
passing some interval becomes smaller. We do not lis
Table I transmission times for the case of free motion. Th
times are all about 2.0 and are almost independent onl,
exchange and method of their calculation. One can see
the presence of the barrier makes the transmission~tunnel-
ing! time smaller. It is due to enriching of the transmitte
part of the wave packet by high-energy components, wh
has greater probability to go through the barrier and mo
faster. Therefore, on average transmitted part arrives to
tectorearlier than the whole wave packet in the case of fr
motion.

V. CONCLUSION

We analyzed the nonstationary tunneling of two intera
ing identical particles by quantum molecular dynam
method based on the Wigner representation. The WM
method allows one to calculate different features charac
izing quantum evolution and influence of particle interacti
and exchange on tunneling. We found that the strong in
action in this problem leads to decrease of the role of t
neling in the transmission. If the interaction is not ve
strong (l,63104) then exchange effects are substant

TABLE I. Tunneling times for the spatial interval@245,45#.
~The system of units is\5m5a51.)

l50 l563104 l523105

Presence time
~no exchange!

0.8(60.1) 0.72(60.09) 0.38(60.05)

Arrival time
~no exchange!

0.9(60.1) 0.86(60.09) 0.80(60.08)

Presence time
~exchange!

0.8(60.1) 0.78(60.08) 0.36(60.04)

Arrival time
~exchange!

1.2(60.1) 1.06(60.09) 0.72(60.07)
7-8
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and affect tunneling. The developed WMD method allow
us to analyze some interesting features of tunneling
proved to be a powerful tool for study of nonstationary qua
tum processes. Of course, the numerical solution of Sc¨-
dinger equation would not be too difficult for the proble
under consideration, but in this work we just demonstrate
method, regarding relatively simple system of two identi
particles in the double-well potential. We made only the fi
02670
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step in the development of WMD for the many-body pro
lems and we intend to report the results of investigation
many-particles system in the next paper.
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